Bases for Cluster Algebras from Surfaces

نویسندگان

  • GREGG MUSIKER
  • LAUREN WILLIAMS
چکیده

We construct two bases for each cluster algebra coming from a triangulated surface without punctures. We work in the context of a coefficient system coming from a full-rank exchange matrix, for example, principal coefficients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Quantum Analogue of Generic Bases for Affine Cluster Algebras

We construct quantized versions of generic bases in quantum cluster algebras of finite and affine types. Under the specialization of q and coefficients to 1, these bases are generic bases of finite and affine cluster algebras.

متن کامل

The Multiplication Theorem and Bases in Finite and Affine Quantum Cluster Algebras

We prove a multiplication theorem for quantum cluster algebras of acyclic quivers. The theorem generalizes the multiplication formula for quantum cluster variables in [19]. Moreover some ZP-bases in quantum cluster algebras of finite and affine types are constructed. Under the specialization q and coefficients to 1, these bases are the integral bases of cluster algebra of finite and affine type...

متن کامل

Integral Bases of Cluster Algebras and Representations of Tame Quivers

In [CK] and [SZ], the authors constructed the bases of cluster algebras of finite types and of type e A1,1, respectively. In this paper, we will deduce Z-bases for cluster algebras of affine types and compare Z-bases with generic variables in [Du2]. Moreover, we give inductive formulas for computing the multiplication between two generalized cluster variables associated to objects in a tube.

متن کامل

CLUSTER ALGEBRAS AND CLUSTER CATEGORIES

These are notes from introductory survey lectures given at the Institute for Studies in Theoretical Physics and Mathematics (IPM), Teheran, in 2008 and 2010. We present the definition and the fundamental properties of Fomin-Zelevinsky’s cluster algebras. Then, we introduce quiver representations and show how they can be used to construct cluster variables, which are the canonical generator...

متن کامل

Positivity for cluster algebras from surfaces

We give combinatorial formulas for the Laurent expansion of any cluster variable in any cluster algebra coming from a triangulated surface (with or without punctures), with respect to an arbitrary seed. Moreover, we work in the generality of principal coefficients. An immediate corollary of our formulas is a proof of the positivity conjecture of Fomin and Zelevinsky for cluster algebras from su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011